Abstract Title of Dissertation: Investigating Aerosol Effects on Clouds, Precipitation and Regional Climate in US and China by Means of Ground-based and Satellite Observations and a Global Climate Model

نویسندگان

  • Feng Niu
  • Zhanqing Li
چکیده

Title of Dissertation: Investigating Aerosol Effects on Clouds, Precipitation and Regional Climate in US and China by Means of Ground-based and Satellite Observations and a Global Climate Model Feng Niu, Doctor of Philosophy, 2011 Directed by: Dr. Zhanqing Li Department of Atmospheric and Oceanic Science/ Earth System Science Interdisciplinary Center Aerosols affect climate by scattering/absorbing radiation and by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). One of the least understood but most significant aspects of climate change is the aerosol effect on cloud and precipitation. A hypothesis has recently been proposed that, in addition to reducing cloud effective radius and suppressing precipitation, aerosols may also modify the thermodynamic structure of deep convective clouds and lead to enhanced precipitation when complex thermodynamic processes are involved. Taking advantage of the long-term and extensive ground-based observations at the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, we thoroughly tested such a hypothesis and provide direct evidence of it. Moreover, the hypothesis is also supported by analysis of satellite-based observations over tropical regions from multiple sensors in the A-Train satellites constellation. Extensive analyses of the long-term ground-based and large-scale data reveal significant increases in rain rate or frequency and cloud top heights with increasing aerosol loading for mix-phase deep convective clouds, decreases rain frequency for low liquid clouds, but little impact on cloud height for liquid clouds. Rigorous tests are conducted to investigate any potential artifacts and influences of meteorological conditions. Large-scale circulation patterns and monsoon systems can be changed by scattering and absorption of solar radiation by aerosols. By means of model simulations with the National Center for Atmospheric Research Community Climate Model (NCAR/CCM3), we found that the increase of aerosol loading in China contributes to circulation changes, leading to more frequent occurrence of fog events in winter as observed from meteorological records. The increase in atmospheric aerosols over China heats the atmosphere and generates a cyclonic circulation anomaly over eastern-central China. This circulation anomaly leads to a reduction in the influx of dry and cold air over that area during winter. Weakening of the East Asian winter monsoon system may also contribute to these changes. All these changes favor the formation and maintenance of fog over this region. The MODerate resolution Imaging Spectroradiometer (MODIS) aerosol products used in the above studies are validated using ground-based measurements from the Chinese Sun Hazemeter Network (CSHNET). Overall, substantial improvement was found in the current version of aerosol products relative to the previous one. At individual sites, the improvement varies with surface and atmospheric conditions. INVESTIGATING AEROSOL EFFECTS ON CLOUDS, PRECIPITATION AND REGIONAL CLIMATE IN US AND CHINA BY MEANS OF GROUND-BASED AND SATELLITE OBSERVATIONS AND A GLOBAL CLIMATE MODEL

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)

.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...

متن کامل

Climate Change Impact on Precipitation Extreme Events in Uncertainty Situation; Passing from Global Scale to Regional Scale

Global warming and then climate change are important topics studied by researchers throughout the world in the recent decades. In these studies, climatic parameters changes are investigated. Considering large-scaled output of AOGCMs and low precision in computational cells, uncertainty analysis is one of the principles in doing hydrological studies. For this reason, it is tried that investigati...

متن کامل

Caspian Sea south coast future climate change estimations through regional climate model

. Caspian Sea south coast future climate change estimations through regional climate model many physical of the procedures related to climate change are not perceived thoroughly. Scientific knowledge used to show those procedures completely, and to analyses forecasts is so complex, since most current studies about climate physical model have been done through semi experimental and random model...

متن کامل

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

Investigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry Observations and Surface Wind in Persian Gulf and Oman Sea

The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate variations. According to the classic oceanography, Ekman and geostrophic currents can be calculat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010